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Abst rac t - -The uniform, upwards flow of a continuously vertically stratified fluid past an axially 
symmetric body is considered. The fluid is assumed to be Newtonian, incompressible, and diffusive. 
A matched asymptotic expansion procedure is used to calculate a correction to Stokes drag on the 
body. The results are valid provided that ~ << 1, Re << c~ 1/3, Fr 2 << ~-  1/3, Pe >> ~2/3 where a is a 
stratification parameter. The results are applied to determine the quasi-steady motion of a body 
settling in a vertically stratified fluid. 

1. I N T R O D U C T I O N  

The steady, horizontal, slow viscous flows of vertically stratified fluids past obstacles have 
recently been investigated by several authors. Martin & Long (1968) solved for the hori- 
zontal flow past a flat plate. Graebel (1969) presented an analytical solution for a cylinder 
in a uniform horizontal translation of strongly stratified fluid and his results were con- 
firmed by the experiments of Browand & Winant (1971). Janowitz (1971) treated the 
horizontal flow past a finite vertical two-dimensional plate. Chadwick & Zvirin (1974) 
evaluated the drag on a sphere in a horizontal flow of a vertically stratified fluid. 

This present work deals with the settling of a small axially symmetric body in a vertically 
stratified diffusive fluid, where far from the body the density increases linearly with depth. 
As the body descends it encounters heavier fluid, making this problem time dependent. 
If the body is permitted to drop far enough it will come to rest at the level where its density 
equals that of the fluid. It is assumed that the Reynolds number is very small such that 
inertia terms can be neglected, and that the body settles very slowly, in a quasi-steady state. 
The drag on the body can thus be calculated at each instant of time as if the body were 
moving steadily at its instantaneous velocity. 

We therefore consider the vertical (upwards) flow past a stationary body where the 
velocity far upstream is steady and uniform. A solution is sought which is hydrodynamically 
steady but allows for a time dependent buoyancy force. 

For definiteness the drag force is initially calculated for a spherical solid, and the results 
are extended in Section 4 for other axially symmetric fluid or solid bodies. 

The governing equations and the boundary conditions for the problem are, in a non- 
dimensional form and with a body-fixed coordinate system whose origin is at the center 
of the sphere: 
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- V p  4- V2q -- ~[)i = 0 ~la] 

d ivq  = 0 itb~ 

I z 
1 + q -Vp  = ~ee v p ~lcli 

q = 0  o n  r = I I2a ]  

q - , ~  a s  r - - ,  :f_ {r z = x z + ~ v  2 + z 2) r~L~.bj 

f ~ - , - x  as r - , ~ .  •2c; 

The normalizations are defined as follows: 
U--free  stream velocity 
a - - rad ius  of the sphere 

P'o = p ' (x  = 0, y, z, t = 0) as y2 + 22 -~ a - - c o n s t a n t  reference density 

r = r ' /a;  x = x ' / a - - b o d y - f i x e d  vertical coordinate 
t = ( U / a ) t ' - - t h e  initial time t' --- 0 is arbitrary 

q(r) = q ' ( r ) /U  

Op;~ 

p(r) 

p(r) 

- p ' o ~ - - c o n s t a n t  density gradient far from the sphere; X' is the vertical space- 
fixed coordinate 

p'(r, t) - Po 
+ t -  

p'oa~ 
ap'(r,  t) Re 

- ~ t x  - # U  + - F 7  2"2x 

Re = p ' o U a / l ~ - - - R e y n o l d s  number 
Fr = U / ( g a ) l / 2 - - F r o u d e  number 

Pe = U a / @ - - P e c l e t  number  
a/? Re [3p'oga 3 

- > 0--stratif ication parameter  e -  Fr 2 /~U 

J = unit vector in the x direction. 

The primed quantities p', p', and q are in physical units and have their usual hydrodynamic 

meanings; # is the viscosity and 2 is the diffusivity. 
An approximate  solution of [11 and [2] is sought for ~ << 1, which enables the problem 

to be treated by a perturbation technique, whereby the dependent variables are expanded 
in powers of ~ in inner and outer fields, similar to Chang (1960). The solution is valid for 
cases where Pe >> ~2.,'3 which implies that diffusion does not dominate convection in the 
continuity equation. Finally, the conditions Re << 0{ 1/3, and Fr a << 06 -1/3 ensure that 
inertia terms can be neglected in both the inner and outer fields to all orders o fe  considered 
here (cf. Chadwick & Zvirin 1974). The drag force on the body is calculated by a method 
using Fourier transforms, as suggested by Childress (1964) and Chadwick & Zvirin (1974). 
Denoting the respective dimensional and non-dimensional Stokes drags by D;, D~, where 
D S = D's /#Ua,  the drag force on any axially symmetric body including the effects of stratifi, 

cation is given by: 
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where B is a constant depending on ? - al/3/pe. For the non-diffusive case (Pe--* oo) 
B = 1.060, which is about seven times the value for the horizontal flow. Obviously the 
sphere creates a greater disturbance in the vertical flow than in the horizontal one. Because 
of the axial symmetry of the problem no moment will act on the sphere. 

In Section 5 the equation of motion of the body is developed based on the drag formula 
[3]. The drag correction for the stratification effects leads to a nonlinear equation which is 
solved by a simple iterative procedure. The resulting solution for the settling velocity is 
valid provided the body is not too close to its final equilibrium position. Finally the theory 
is applied to the settling of small particles in a solar pond. 

2. E X P A N S I O N  O F  I N N E R  A N D  O U T E R  F I E L D S  

A procedure of simple perturbation in ~ for solving [1]-[2] would fail because similar 
to Whitehead's paradox, the boundary condition at r ~ oo cannot be satisfied by the 
particular integral of the first perturbation (cf. Van-Dyke (1964), p. 153). Therefore, a 
singular perturbation method is adopted, whereby the flow field is separated into inner 
and outer fields and their solutions are matched in an intermediate field. In the inner 
field the body force is small compared with the viscous forces, while in the intermediate 
field these forces have the same order of magnitude. From [la] and [2c] it can be concluded 
that this happens when r = 0(a-1/3), which suggests the stretching factors given in [10]. 
The form of the inner expansions [5] and the outer expansions [11] is determined by the 
matching process in the intermediate field. 

Because of the axial symmetry every property depends on r and x only. The expansions 
for the inner field are: 

q(r, x) -- ht°}(r, x) + 0cl/3h(1)(r, x) + 0(0~ 2/3) [5a] 

p(r, x) = pt°}(r, x) + ~l/3ptl}(r, x) + O(ot 2/3) [5b] 

p(r, x) = p(°)(r, x) + ~l/3p(1)(r, x) + 0(0{2/3). [5C] 

Introducing these expansions into [1] yields the following equations for the first two 
approximations: 

- V p  (°) + VZh (°) = 0 [6a] 

div h (°) = 0 [6b]. 

+ h (°)" VP (°) = p~VZp (°) [6cl 1 

h ( ° ) = 0  on r =  1 [7] 

- V p  (1) ÷ V2h (1) = 0 [8a] 

div h (1) - 0 [8b] 
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+ h ~1~. VotO~ = ; e V 2 f  n htO}. Vp (11 

h ( 1 ) =  0 o n  r = 1. 

Lgcj 

It is noted that from [2] only the boundary conditions on the sphere [2a] are to be 
satisfied by the inner expansions, and the other boundary conditions will be fixed below 
by the matching. 

The outer expansions are uniformly valid far from the sphere, i.e. as r-+ .~. In this 
region the sphere can be regarded as a point disturbance (or singularity) and outer co- 
ordinates are defined by: 

The velocity, pressure and density are expanded by the following in the outer field: 

q(i;, 2) = [ + ~t"3g~n(L 2) + 0(0C 2'3) [1 la] 

p(f, 2) = 10~1'3x2 q-- ~2..3p11)(~, ?~) q_ 0(0~) [1 lb] 

p(L 2) = -c~- ~3k + p~)(?,2) + O(~L'~). [ l lc]  

Thus the boundary conditions [2b] and [2c] are satisfied by the first terms in q and p. 
Introduction of [10] and [11] into [1] yields the following set for the first perturbation 

of the outer field: 

[ 12a] 

divgtl~ = 0 [12b] 

3(1,3 
/~p~ 1 ) g~ll .  [ =  ~,2,o( I ) ~ ¢q2- - P e  -~ 7 v e f  '). [12c] 

[2b] and [2c] now lead to the following boundary conditions: 

p~l~ = 0 :  g~l) = 0 as f: ~ ~e. [13] 

In the following we consider the parameter 7 to be of order of unity or less. The case of a 
non diffusive fluid is obtained as the special case ), = 0. 

3. T H E  S O L U T I O N S  F O R  T H E  F I R S T  T E R M S  1N T H E  E X P A N S I O N S  

For the inner field, [6a] and [6b] yield the Stokes solution: 

h~°~ = [ - -  ~ ~L- V + F14a] 
4 &~r '- 

3x  
p~Ol = _ 2J'~ [14b] 

which satisfies the boundary condition [7] on the sphere and matches with the first terms 
of [ l la]  as r ~ c~. p~O} is then governed by the single equation [6c]. However, since h I~ 
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does not depend on pt°) it is not necessary to solve for pCO) in order to calculate the drag 
on the sphere to second approximation. 

The intermediate variables are defined by: 

r~ = O~/3r; X~ = Offr/3X [ 1 5 ]  

where 0 < a < 1. Rewriting [14a] in these variables leads to: 

3 [ i  v Xalo~a/3 ht°l(r, , ,  x~,'e) = | . . . .  2/r  , ~--2r,] + 0(ct2"/3). [16] 

For the outer field, as mentioned above, the sphere can be regarded as a singular point. 
This can be represented by the Stokes drag, 6nf(r)l, on the right hand side of [12a]. Intro- 
ducing the three dimensional Fourier transforms: 

rgd m]  
1 /Hlkll dk [,7] 

/ / 
kp{l~/ Lg(k)J 

and substitution into [12a]-[12c] yields: 

ikH + k 2 F  + R1 ----- - - 6 ~ z l  [18a] 

k.  r = o [1863 

i k l R  - F" ] = - T k 2 R .  [18c] 

The solutions for the last set are given by: 

6~ f . (k e - k2)] + (ik~k 2 + 7k lk4)k~  
r(k)  = ~ . - t  + ~2(] + ik~k5 + ) k  ~-) Z ~ I  z j [19a] 

k2k 2 _ iTklk  4 
H(k) -67rk2(1 + ikak 2 + 7k 4) - k 2 [19b] 

k 2 - k~ 
R(k) -6~Zk2(l + ikak 2 + 7k 4) - k~" [19c] 

The formal solution for the outer field is given by insertion of [19] into [17]. In order to 
evaluate the drag on the sphere, however, it is sufficient to consider the expansion of the 
integral: 

f 1 (F - Fs)e ik~dk as / ~  0. [20] 
8re 3 

F s is the Fourier transform of the fundamental Stokes solution: 
6~z(, klk / 

r~(k) = - ~ - ,  - ~ - r ] .  [21] 

The integral [20] is divided into two parts, 0 _< k < ?-a, 0 < 2 < 1, where the exponent 
reduces to 1 and k > ?- ~, where k is large. Then, as ? ~ 0: 
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i f  _ 1 f(F_Fs)dk+ 8zc3 , ( F -  Fs)e ik~dk  87r.~k~ 

~ 2 "~ ~ 2 
3 ( 'k '(k" - k l ) t -  kl(k" -- k l )ke ik .ed  k ",}. " ) 0 ]  J + 42e k>~ ~ --- k~3,~6 +--;k-~47i . . . . . .  + 0tP' 

The first term on the right-hand side of [22] is a constant vector, denoted by B; the seond 
term is defined by v. Following Childress (1964) and Chadwick & Zvirin (1974), [221] can 
be written as: 

g (U_  A = B +  v as ? ~ 0  [23] 

where 

A = - i  ~" 27 ' [24] 

Rewriting [ l la]  and [23] in intermediate variables r~ = ~a"3r, etc., we have for the 

outer expression : 

3(i _ V  xot~"3 qlr~, x~; cO = ] -  ~ r,~ ~2,'~] + (B + v)cd 23 + o(e' 3). i,25i 

Comparing [16] with [25] it is seen that the first two terms on the right-hand side of the 
latter are matched with h ~°). Thus h ~l) has to match B + v in the intermediate field, or: 

h ~11-~B + v as r ~  ~ .  [26] 

The first perturbation h ~xl to  the inner velocity distribution is governed then by [8a], [Sb], 

[9] and [263. 

4, T H E  D R A G  O N  T H E  B O D Y  

The drag force acting on the sphere is calculated by using Faxen's law, cf. Happel & 

Brenner (1965), p. 67, which states, in physical units: 

F' = 67za#(q~)or + ~xa3(V'2q'~)or E27i 

where q~ is the inner velocity far from the sphere and the subscript "or" denotes evaluation 
of the function at the origin. Since the inner solution far from the sphere is matched by 
the outer solution at the intermediate region which is far from the sphere, the drag is 
found by introduction of [25] and [26] into [27]. 

As can be seen from [22] v is expressed by an integral over large values of k. The two 
terms of [27] due to v are of the orders 0(f S~) and 0(? 3~) respectively, 2 > 0. Thus the contribu- 
tion ofv to the drag, obtained by letting ~ ~ 0 can be made arbitrarily small. The remaining 

term B is then determined from [19a] and [21]: 

- 3 ( '~ (k 2 - k~) 3 + ?k°(k 2 -- k~) 2 
B = i ~ J _ .  k - g ~  - 7 k--12 q_ 7?k~2 -7 ~kg] dk = ~B [28] 
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where the other components of the vector as well as its imaginary part vanish. 
In order to evaluate B, the integral in [28] is transformed to spherical coordinates: 

3 f~/2 fk~ sin 5 0(sin z 0 + yk 4) 0 dk d0. 
B(7) = ~ ~0=o =o ( sin2 0 + 7k4) 2 + k 6 cos 2 

[29] 

Numerical integration yields B(7) which is listed in table 1. It is noted that for the non- 
diffusive case (7 = 0) the integral is straight-forward and B(0) = F(7)F(1)/2F(~) = 1.060. 

As seen from the table, B decreases when 7 increases; this indicates that the disturbance 
of the sphere becomes weaker when diffusion can take place. 

For an axially symmetric body with dimensional Stokes drag D's~, the same analysis 
applies, but we replace the singularity 6rt6(~)] in [12a] by Ds6(f)1 when solving the outer 
problem (cf. Chang 1960), which leads to the drag formula [3]. Payne & Pell (1960) have 
calculated Ds for a class of axially symmetric solid bodies. D~ for a fluid sphere is given in 
Happel & Brenner (1965). In general, even if v contributes to the drag, the generalized 
Faxen's law given by Hetsroni & Haber (1970) can be used. 

5. SETTLING OF THE BODY 

The equation of motion of the body when it settles in the linearly stratified fluid relates 
the acceleration to the forces acting on the body: gravity, buoyancy, and drag. If the 
body axis is aligned with the vertical, and the settling is slow enough such that a quasi- 
steady state prevails, then the drag is given by [3] at each instant during the descent. Denot- 
ing the depth of the body by d(t), d = d'/a, the equation of motion in dimensionless form is 
(to order 0(C(1/3)): 

/ / +  Mo[1 + ed-1/3]d + Lod = (1 - ~/)/Fr 2 [30] 

where 

p~ 
r/ = 7 < 1, M o = xr//Re o, L o = r/c%/Re o 

PB 

e -- B(7od-4/3)~ 1/3 << 1 

x = D's,o/#Uonas; p~ = density of body [31] 

s = shape factor = V/rra 3 

V = volume of body; a = characteristic body dimension 

The dot denotes differentiation with respect to the dimensionless time, and the subscript 
" o "  implies that the quantity is evaluated at t = 0. The second term in the brackets of [30] 
arises from the dependence of ct on velocity. 

For the initial depth we take the reference point do = 0, where the velocity of the body 
U o has already reached the terminal quasi-steady state: 

7 

Table 1. The dependence of the drag correction B on the diffusion parameter 7 = ct l /a /Pe 

0.0 0.01 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0 5.0 10.0 

1.060 1.044 0.944 0.872 0.821 0.782 0.750 0.723 0.681 0.649 0.442 0.372 
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d = 0 ;  d = 1 at t = 0 .  [32~ 

The  equat ion  of mot ion  [30], is nonl inear  due to the effects of stratification. However ,  

the presence of the small pa rame te r  e suggests an expansion of the type 

d = d "  + ~;d ~1) + " i33i 

which permits  the l inearizat ion of [303, 
Subst i tut ion of [33] into [30] gives the following equat ions  for d (°) and d '~:  

1 
= ~34aj O. (°) + M,,d ~°) + Lo d(°) (1 - r/)~r ~ V -* 

d (°~ = 0 :  d (°) = 1 at t = 0  ~34b] 

ct ( l )  + M,,[I (1) + Lo d(1) = -- Mo(d~°~) 2: "~ [35a] 

d ̀ 1 ' = 0 :  el ~ 1 ) = 0  at t = 0 .  [35bl 

It is immedia te ly  seen that  the par t icular  solut ion of [34a] : 

d(O) _ 1 - ~I R e o  d (')' P B  - P~' 1~36~ 
~q r/ ~oFr~ or - - e q -  flD'o 

is the a sympto t i c  equi l ibr ium depth  where the densities of the body  and fluid are equal. 
The  comple te  solut ion of [34a, bl is 

d (°~= d~'~ + c ,e  '~'' + cze e~' i37] 

where 

(o1,2 = - ½ M o i l  g (1 - 4Lo/Mo)  ~:23 

- Lo/Mo,  - M o L38a~ 

..k +tim 
1 + v'>*:q [38b] 

c, = - ~  J ~ 2 -  

,4, A(o) 
i -~ '4- ' l"eq [ 3 8 C ]  

Ca - -  q ' l  - -  ~ 2  

F r o m  [31] it is clearly seen that  under  the assumpt ions  made  in Section 1, 4Lo/Meo << 1. 

This implies that  4)1,2 are real and negat ive and the body  approaches  the equil ibrium 
state [363 wi thout  oscillations. Moreover ,  the second exponent ia l  in [371, e .2', decays 
much  faster than  the first one. Thus  the zeroth  order  quasi -s teady settling can be approxi -  

mate ly  described by 

d (°) ~ d m ) l l  _ e-,..~). -'eq,- T = Mo/Lo f39] 

which leads to the zeroth  order  settling velocity:  

d ~°) ~ d~q) e ''~ = L~,o e - '  '~ [40] 
z U o 
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where 

a2g(p'B - P'o) 
"J $, O - -  

which is the terminal Stokes settling velocity evaluated for the conditions at t = 0. Equation 
[40] is accurate for t >> Mo i and d~ >> 1. 

Substitution of [40] into [35a] and using [35b] gives the first order correction to the 
settling velocity 

[ Us,o ~ 2/3 
d ( l ) ~ - - [ U o o J  (2e-2t /zr -  3 e - m ) "  [41] 

Finally [41], [40], and [33] lead to 

+ - 0(e2). [42] d = - ~ °  e-t/~I1 e(2e t/3~ 3)(~-~) - 1/3] + 

There are several points which must be discussed concerning the utility of [42]. Firstly, 
the initial velocity of the body, Uo, is not in general a known quantity, and it must be 
determined by experiment. However, for a large class of practical problems, when Mo >> 1, 
Uo -~ U~,o. Secondly, the small parameter e-as defined by [31] is a function of time because 
of the functional dependence of B on the velocity. If diffusion is present (70 ~ 0), it is 
sufficiently accurate to use 7old t°)]- 4/3 as the argument of B. Thirdly, [42] is valid for t in 
the range 

The lower limit as already mentioned, allows the second exponential in [37] to be neglected; 
the upper limit ensures that the second term in the expansion [33] is smaller than the 
first, and that e << 1. Since e << 1, the upper limit imposes a restriction on the use of [42] 
only in the immediate neighborhood of d~. 

The theory presented here necessarily results in small changes, by the inherent nature 
of the perturbation process; nevertheless it is of interest to apply the theory to a specific 
problem. As an example of an application, consider the settling of particles in a solar 
pond, which is stably stratified with dissolved salts to prevent convection. The ability of 
the lower surface of the pond to absorb energy is strongly affected by the presence of small 
pollutant particles. It is therefore important to know how long it takes the particles to 
reach the bottom of the pond. 

We consider a spherical particle with a radius of 10- 5 m, and a density of 1.5 x 103 kg/m 3. 
The pond is 1 m deep and is linearly stratified with a density of 1.0 x 103 kg/m 3 at the top 
and increasing to 1.3 x 103 kg/m 3 at the bottom. Taking a viscosity p ~ 10-3 kg/m sec, 
the terminal Stokes settling velocity Us, o is 1 × 10-4m/sec. We also calculate Re o = 
1 x 10 -3, Fro 2 1 x 10 -4, af t  3 × 10 -6 ,  Ct o 3 X 10 -5, 1,,3 3.1 × 10 -2, SO that _~. ~ 0~ o 

the parameter restrictions stated in Section 1 are satisfied. Based on Us,o the particle 
reaches the bottom of the pond in 1.0 × 104 sec. The zeroth order correction [39] increases 



752 Y. ZVIR1N and  R. S. CHADWICK 

the settling time to 1.37 x 104 sec. Finally,  the first order correction E42] increases the 

t ime to slightly over 1.42 x 104 sec. 

REFERENCES 

BROWAND, F. K. & WINANT, C. D. 1972 Blocking ahead of a cyl inder moving  in a stratified 

fluid: An experiment.  Geophys. Fluid Dynamics 4, 29-53. 

CHADWICK, R. S. & ZVIRIN, Y. 1974 Slow viscous flow of an incompressible stratified 

fluid past  a sphere. J. Fluid Mech. 66, 377-383. 

CHANG, I-DEE 1960 Stokes flow of a conduc t ing  fluid past an axially symmetric  body in 

the presence of a un i form magnet ic  field. J. Fluid Mech. 9, 473 477. 

CHILDRESS, S. 1964 The stow mot ion  of a sphere in a rota t ing viscous fluid. J. Fluid Mech. 
20, 305 314. 

GRAEBEE, W. P. 1969 On the slow mot ion  of bodies in stratified and rotat ing liquids. 

Q. J. Mech. Appl. Math. 22, 39-54, 

HAPPEE, J. & BRENNER, H. 1965 Low Reynolds Number Hydrodynamics. Prentice-Hall .  

HETSRONI, G. & HABER, S. 1970 The flow in and a round  a droplet  or bubble  submerged 

in an u n b o u n d e d  arbi t rary velocity field. Rheol. Acta 9, 488-496. 

JANOWITZ, G. S. 1971 The slow transverse mot ion  of a flat plate through a non-diffusive 

stratified fluid. J. Fluid Mech. 47, 171-181. 

MARTIN, S. & LONG, R. R. 1968 The slow mot ion  of a flat plate in a stratified fluid. J. 

Fluid Mech. 31, 669-688. 

PAYNE, L. E. & PEEL, W. H. 1960 The Stokes flow problem for a class of axially symmetric  

bodies. J. Fluid Mech. 7, 529-549. 

VAN DYKE, M. 1964 Perturbation Methods" in Fluid Mechanics. Academic Press. 

R~sum~--On considere t'6coulement vers le ham d'un fluide continument stratifie verticalement 
sur un corps axisymmetrique. Le fluide est suppose &re newtonien, incompressible et soumis au 
phenomSne de diffusion. Un'proc@de equivalent ft, une expansior~ assymptotique est utilis6 pour 
calculer la correction du drainage de Stokes sur le corps. Les resultats ne sont valables que pour 

<< 1, Re << zd 3, Fr 2 <~ ~.-1/3, Pe >> ~2'30U ~ represente le coefficient de stratification. Les 
resultats sont appliques pour determiner le mouvement presque continu d'un corps expose "fiun 
fluide verticalement stratifi& 

Auszug--Die gleichfoermige Aufwaertsstroemung einer kontinuierlich vertikal geschichteten 
Fluessigkeit um einen rotationssymmetrischen Koerper wird betrachtet. Die Fluessigkeit wird als 
Newtonisch, unzusammendrueckbar, und diffusiv angenommen. Mit einer Methode angepasster 
asymptotischer Expansion wird ein Korrekturglied zum Stokessehen Widerstand am Koerper 
berechnet. Die Gueltigkeit der Ergebnisse setzt a << 1, Re << ~ 1/3, Fr 2 << ~-1/3, und Pe >> ~2,3 

voraus, wobei ~ ein Schichtungsparameter ist. Die Resultate werden zur Bestimmung der quasi- 
stationaeren Bewegung eines in einer vertikal geschichteten Fluessigkeit absinkenden Koerpers 
benuetzt. 

PeamMe--PaccMoTpeno O~HOpO~luoe Bocxoanmee TeqeHrte HenpepbJBHO~ >KHtlKOCTri, paccno- 
eHHHO~ B BepTI, IKaJIbHOM HanpaBneHrm, npome~lme~ ocecrIMMeTpHqHOe Te2Xo. Flpe~nonoxeno, 
qTO )KH~KOCT'b H%IOTOHOBCKagL Hec~tlMaeMa~l H ~J,l~qbq3Ha~t. F[pott~qpa COOTBeTCTByIOIUeFO 
aCCHMIITOTHqeCKOFO pacKpbITH~l HCnO.rlb3yeT pacqeT HOllpaBKH Ha 3aKOH CTOKCa ,2Jl~t yKa3aHHOFO 
Te~qa. Pe3y~t,  TaTbI ~eHCTBI4Te.rlbHbl npH yCSIOBHH, tlTO HapaMeTp pacc~qoeHn~ 7 3HaqHTeJIbHO 
MeHee eIIHHHI~bl, KpHTepri~ Pe~HoJ~t,;Ica Re<< 71/3 KpnTepn~ qbpy~a Fr2<< ~- t ;3 .  KpHzepn.~ 
FIeKJie e e  >> ~2/3. f~OCTHFHyTble pe3yJIbTaTbI gIpl4MeHeHbl K nCeB2IOyCTaHOBHBmeMyc~I /IBI4~eHHbO 
oce~aromero  Te~Ia B BepTHKaIlbnO pace~qoeHHOVi XH)IKOCTB. 


